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Abstract

Solving a stochastic optimization problem often involves performing repeated
noisy function evaluations at points encountered during the algorithm. Re-
cently, a continuous optimization framework for executing a single observa-
tion per search point was shown to exhibit a martingale property so that
associated estimation errors are guaranteed to converge to zero. We gen-
eralize this martingale single observation approach to problems with mixed
discrete-continuous variables. We establish mild regularity conditions for this
class of algorithms to converge to a global optimum.

Keywords: Stochastic optimization, simulation optimization, adaptive
search, martingale processes

1. Introduction

Optimization problems with an objective function that has little or no
known structure (e.g., non-convex, non-di↵erentiable) are challenging to solve.
Adding to the challenge is the presence of noise when the objective function
cannot be evaluated exactly but must be estimated. This is often accom-
plished by repeated calls to a computer program such as in a discrete-event
simulation. This type of stochastic optimization problem is also referred to
as simulation optimization [11]. Stochastic optimization has many diverse
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applications areas including engineering, economics, computer science and
the biological sciences.

We consider the stochastic optimization problem (P1),

min
x2S

f(x) (1)

where
f(x) = E [g(x, ⇠)] (2)

and the argument x 2 S ⇢ Rd is a feasible point in a mixed discrete-
continuous space S embedded in Rd that is equipped with the Euclidean
metric and modeled by a finite union of compact convex sets and ⇠ is a ran-
dom element over a probability space (⌦,A,P ). In this setting, the class of
optimization problems under consideration includes problems with all real-
valued variables, mixed integer-continuous variables, and all integer variables.

Many approaches exist to solve problems of the form (P1). We consider
a general setting where f(x) cannot be evaluated directly, but must be esti-
mated by observing the noisy performance function g(x, ⇠). When g(x, ⇠) is
evaluated by running a discrete-event simulation, ⇠ represents a sequence of
random numbers, typically initiated with a random seed. In this situation,
the optimizer does not have direct access to ⇠, and cannot make use of any
structure of g given ⇠. This is in contrast to sample average approximation
[14, 15] or stochastic programming with recourse [6] where the optimizer
may use known structure (e.g., linearity or convexity) of g under a specific
scenario resulting from an observation of ⇠.

A classic method to solve (P1) is stochastic approximation, which em-
ploys some form of a stochastic gradient to guide the search towards a sta-
tionary point where the gradient vanishes [7, 16, 22]. The ingenious element
of stochastic approximation in the Robbins-Monro scheme is to use a single
observation per design point and, by gradually reducing step sizes, indirectly
average out across iterations the noise that is inherent in the stochastic gradi-
ents. However, this approach is not appropriate when the objective function
is not di↵erentiable, as occurs in a mixed integer-continuous space or an in-
teger space. Also, a solution from stochastic approximation usually pertains
to a local optimum, while we seek a global optimum.

Typically, adaptive random search algorithms are used for seeking a global
optimum in a general domain (e.g., simulated annealing, genetic algorithms,
model based algorithms, partitioning methods, meta-models, etc.) [1, 3,
19, 20, 24]. A common approach to handle noise in the objective function
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is to take several observations (repeated replications) at a feasible point x

and estimate f(x) with a sample mean. This leads to a question of how
many replications to use and how to balance exploration with estimation.
Determining the number of replications with a limited budget of evaluations
has been explored in the optimal computation budget allocation (OCBA)
approach [8]. Other methods [21] allow the number of repeated observations
at a given sampled point to grow as the search progresses so that a law
of large numbers can take e↵ect and the estimate of the objective function
converges to the true value.

Recently, a class of single observation search algorithms (SOSA) was in-
troduced [13] that performs exactly one g function evaluation (e.g., simu-
lation) per feasible point on problems in a continuous space. The idea in
SOSA is to use nearby points, in a ball of shrinking radius, to estimate the
true function value. SOSA can be coupled with a broad class of adaptive
random search algorithms, and under mild assumptions, will converge with
probability one to a global optimum. The convergence result relies on prov-
ing that the accumulated error of the search process follows a martingale
process. However, the theory of SOSA in [13] is limited there to stochastic
optimization in a continuous space.

In this paper, we generalize the single observation approach from a contin-
uous space to a mixed discrete-continuous space. In [13], the feasible region
is assumed to be a convex compact set; here we allow the feasible region S

to be a finite union of convex compact sets. A bounded mixed-integer set
with convex cross sections, and bounded integer lattices are included in this
class. Two examples of feasible regions that are included in this paper are
illustrated in Figure 1.

We first show in this paper that the function estimate f̂(x) using the
single observation approach with a shrinking ball converges to the correct
value f(x) at each x 2 S with probability one (Theorem 1). This was not
shown explicitly in [13] in a continuous convex space, and here we show it in
a mixed discrete-continuous feasible region. In Theorem 2, we generalize the
convergence of the optimal estimate to the global optimum from the continu-
ous domain to a mixed discrete-continuous domain. The insight behind this
result is that the radius of the ball goes to zero at a rate determined by the
maximal dimension of the feasible region. This provides convergence results
to a global optimum in a mixed discrete-continuous domain for a broad class
of adaptive random search algorithms. When the domain is a finite set, such
as a bounded integer lattice, we show that the single observation approach
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with a shrinking ball naturally achieves repeated observations in an e�cient
manner. In this finite case, we show that the function evaluations at the
same point are independent and identically distributed, although there are
dependencies in function evaluations across di↵erent points. Our approach
thereby incorporates the traditional approach of multiple replications.

An extensive numerical experiment was reported in [17] documenting the
e↵ectiveness of the SOSA algorithm against various alternatives. In [17],
SOSA showed promising results on 72 test problems, including 24 with all
continuous variables, 24 with all integer variables, and 24 with mixed, half
and half, integer and continuous variables. In this paper, we investigate the
detailed behavior of SOSA when applied to a problem with mixed binary and
continuous decision variables. We aim at complementing the results in [17] by
illustrating the main features of the algorithm that deliver its e↵ectiveness.

(a) (b)

𝑥1

𝑥2

𝑥3 𝑥1

𝑥2

Figure 1: Two examples of feasible regions satisfying Assumption 1. The set S in panel (a)
has one integer variable in the first dimension and two continuous variables in the second
and the third dimensions. The feasible region is the union of three closed ellipses. The set
S ⇢ R2 in panel (b) is the union of six convex sets of varying dimensions.

2. Martingale Search Algorithms

We now present SOSA, a class of single observation search algorithms,
with slight modifications from [13], so that it can be applied to problems
with a mixed discrete-continuous domain. During the course of the algo-
rithm, points are sequentially sampled from the feasible set S, according to
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an adaptive sampling probability measure, denoted by qn for iteration n. The
measure qn may be implicit when the method of generating the next point is
based on a Markov chain Monte Carlo sampler, such as hit-and-run [18, 27]
or another point generator. Thus a specific implementation of SOSA may
be characterized by its method of generating sample points. As the algo-
rithm proceeds, the objective function value at a point x 2 S is estimated
by averaging the observed function evaluations of nearby points, in a ball of
shrinking radii rn.

Let Xn and Yn be, respectively, the set of sample points obtained in the
course of the algorithm and their corresponding observed function value up
to iteration n. Let B(x, r) denote a Euclidean ball centered at x with radius
r. Note that we only make a single observation at each iteration.

Single Observation Search Algorithms (SOSA) cf. [13]

We are given:

• An initial probability q1 for search on S and a family of adaptive search
sampling distributions on S with conditional probability

qn(· | x1, y1, . . . , xn�1, yn�1), n = 2, 3, . . . ,

where xn is the sample point at iteration n and yn is its observed
function value.

• A sequence of radii rn > 0.

• A slowing sequence in  n.

Step 0: Sample x1 from q1, observe y1 = g(x1, ⇠1) where ⇠1 is a random
sample of ⇠ that is independent of x1. Set X1 = {x1} and Y1 = {y1}.
Also, set f̂1(x1) = f̂

⇤
1 = y1 and x

⇤ = x1. Set n = 2.

Step 1: Given x1, y1, . . . , xn�1, yn�1, sample the next point, xn, from qn.
Independent of x1, y1, . . . , xn�1, yn�1, xn, obtain ⇠n as a random sample
of ⇠, and observe

yn = g(xn, ⇠n).
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Step 2: Update Xn = Xn�1 [ {xn} and Yn = Yn�1 [ {yn}. For each x 2 Xn,
estimate the objective function value as

f̂n(x) =

P
{kn: xk2B(x,rk)} yk

|{k  n : xk 2 B(x, rk)}|

where |A| for a set A denotes the number of elements in A. Note: a
recursive sequential update of f̂n(x) is given in [13].

Step 3: Estimate the optimal solution as

x
⇤
n 2 argminx2Xin

f̂n(x),

where Xin is the subset of Xn determined by the slowing sequence in.
Estimate the optimal value as

f̂
⇤
n = f̂n(x

⇤
n).

Step 4: If a stopping criterion is met, stop. Otherwise, update n  n + 1
and go to Step 1.

3. Convergence Analysis

The convergence results of SOSA rely on proving that the accumulated
error of the optimization search process follows a martingale process. We
make the following assumptions regarding the stochastic optimization prob-
lem (P1).

Assumption 1: The feasible set S ⇢ Rd is a finite union of closed and
bounded convex sets.

Figure 1 illustrates two feasible regions that satisfy Assumption 1. In
Figure 1(a), the feasible set S ⇢ R3 is the union of three ellipses each a convex
subset in R2, and in Figure 1(b), the feasible set S ⇢ R2 is the union of several
convex sets with di↵erent dimensions including a point (zero-dimensional), a
line segment (one-dimensional) and a flower-shaped figure (two-dimensional)
of four convex pedals.

Assumption 2: Under the Euclidean metric on Rd, the objective function
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f(x) is continuous on S.

Assumptions 1 and 2 ensure that an optimal solution exists, and we let f ⇤

denote the optimal objective value and let X ⇤ = Argminx2S f(x) denote the
set of optimal points. Note that if x 2 S is an isolated point, any function
f is continuous at x [23]. Therefore, in the case of a finite set of discrete
points, such as an integer program, any objective function f automatically
satisfies Assumption 2.

The convexity assumption, in Assumption 1, may be relaxed by extending
each set to its convex hull, and then consistently, extending the objective
function and sampling distribution to the convex hull while preserving all
required properties (e.g., continuity of the expectation and boundedness of
the noise).

As in [13], we denote the di↵erence between the observed performance
and the mean performance, called the random observational error, by

Z(x) = g(x, ⇠)� f(x) (3)

for x 2 S.

Assumption 3: The random observational error Z(x), as in (3), is uniformly
bounded over x 2 S, that is, there exists 0 < ↵ <1 such that, for all x 2 S,
with probability one,

|g(x, ⇠)]� f(x)| < ↵.

The assumption of bounded noise, in Assumption 3, is commonly met in
applications. In machine learning applications, it is usual to assume bounded
noise [9]. When the objective function is the expected performance of a
computer simulation, the noise is typically approximated by a truncated
distribution which is bounded by construction.

However, in the case of a purely discrete feasible region, the boundedness
condition on noise is not required for almost sure convergence. In the case of
a mixed discrete-continuous feasible region, we can replace the assumption
of uniformly bounded noise with bounded variance of the noise and prove
convergence in probability, as discussed in [13].

Referring to SOSA and following the notation used in [13], let Xn and Yn

denote the sample point and its corresponding observed objective function
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evaluation at iteration n, for n = 1, 2, . . ., that is,

Yn = g(Xn, ⇠n), (4)

where {⇠n, n = 1, 2, . . .} are the random elements driving the value of Yn.
Let F0 = �(X1) be the initial sigma field generated by X1, and let

Fn = �(X1, ⇠1, . . . , Xn, ⇠n, Xn+1)

be the sigma field generated byX1, ⇠1, . . . , Xn, ⇠n, Xn+1. Note thatXn is Fn�1

measurable. The process of (Xn, Yn) is adapted to the filtration {Fn}1n=0.
From the algorithm construction, ⇠n’s are not only independent and identi-
cally distributed (iid), but each ⇠n is also independent of Fn�1.

Since ⇠n is independent of Fn�1 and Xn is Fn�1 measurable, the random
observational error at iteration n, given by

Zn = Yn � f(Xn) = g(Xn, ⇠n)� f(Xn), (5)

satisfies a crucial property; it is a martingale di↵erence, i.e.,

E [Zn | Fn�1] = 0 a.s. (6)

As a result, not only the sum of Zn (the total error) is a martingale, but also
any selective sum of Zn also forms a martingale when the selection process is
adapted to the filtration {Fn}1n=0. This property is made formal in Lemma 1.

We are particularly interested in the sum of Zk that contribute to the
estimation of f(x) on the n

th iteration. For any design point x 2 S, define
an indicator function Ik(x) to identify if the point Xk sampled on the k

th

iteration is in the ball B(x, rk),

Ik(x) =

⇢
1 if Xk 2 B(x, rk)
0 if Xk /2 B(x, rk).

Observe that Ik(x) is Xk measurable and, hence, Fk�1 measurable.
For each x 2 S, define the accumulated random error in estimating f(x)

on iteration n using the function evaluations from the points Xk, k = 1, . . . , n
as the sum of random errors from sample points that fall into the balls around
x,

Mn(x) =
nX

k=1

Ik(x)Zk. (7)

Since Zk, k = 1, . . . , n are martingale di↵erences and Ik(x) is Fk�1 measur-
able, the sum of those Zk included in Mn(x) is also a martingale.
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Lemma 1. For each x 2 S, the accumulated random error process {Mn(x), n =
1, 2, . . .} is a martingale.

Proof. See the impossibility of systems in [10], page 213.

Theorem 1 establishes that the function estimate at a given iteration
point of the algorithm converges to the true value as long as the proportion
of points in the balls remain positive with probability one. To specify this
condition, let Ln(x) denote the number of points Xk that are included in the
estimate f̂n(x),

Ln(x) =
nX

k=1

Ik(x).

Theorem 1. If Assumptions 1, 2 and 3 are satisfied, and if, for any feasible
point x 2 S, there exists x > 0 such that

P
✓
lim inf
n!1

Ln(x)

n
> x

◆
= 1, (8)

as rn # 0, then the estimated objective function f̂n(x) converges to the true
objective function value f(x) with probability one, i.e.,

f̂n(x)! f(x) w.p.1.

Proof. For x 2 S, by the definition of f̂n(x),

f̂n(x) =

Pn
k=1 Ik(x)Yk

Ln(x)
.

Since Yk = f(Xk) + Zk, we have

f̂n(x) =

Pn
k=1 Ik(x)(f(Xk) + Zk)

Ln(x)

By adding and subtracting f(x) and regrouping,

f̂n(x) = f(x) +

✓Pn
k=1 Ik(x)f(Xk)

Ln(x)
� f(x)

◆
+

Pn
k=1 Ik(x)Zk

Ln(x)

= f(x) +

✓Pn
k=1 Ik(x)f(Xk)

Ln(x)
� f(x)

◆
+

Mn(x)

Ln(x)
. (9)
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Consider a sample path from SOSA, denoted x1, x2, . . . , xn, . . ., that sat-
isfies the probability-one event in (8). For any x 2 S, let xi(n) denote the
subsequence of the sample path that falls in the balls around the point x,
that is, xi(n) 2 B(x, ri(n)) for n = 1, 2, . . .. Also, let ln(x) be the number
of points in the sample path that fall in the balls around x up to iteration
n. Since lim infn!1 (ln(x)/n) > x, we have ln(x) ! 1 as n ! 1. Since
rn # 0, we have xi(n) ! x as n ! 1. By Assumption 2, f(xi(n)) ! f(x),
since, as rn # 0, the integer portion of the subsequence will stabilize, and the
continuous portion will converge to its continuous counterpart.

By Cesáro’s Lemma (see A30 in [5]),

Pn
k=1 f(xi(k))

ln(x)
� f(x)! 0.

Therefore, the second term in (9) goes to zero with probability one, i.e.,

Pn
k=1 Ik(x)f(Xk)

Ln(x)
� f(x)! 0 w.p.1.

By Assumption 3 and the strong law of large numbers for a martingale
(Theorem 3 page 243 in [10]), we have, for x 2 S,

Mn(x)

n
! 0 w.p.1.

This and condition (8) imply that the third term in (9) goes to zero with
probability one, i.e.,

Mn(x)

Ln(x)
=

Mn(x)/n

Ln(x)/n
! 0 w.p.1.

Therefore, f̂n(x)! f(x) w.p.1.

Theorem 2 provides the main convergence result for SOSA. Theorem 2
states that, with some regularity conditions, the optimal value estimates
generated by SOSA converge with probability one to the true global optimal
value. A crucial condition for the convergence is to have the sample points
generated by the algorithm cover the feasible region with su�cient density.
To be precise, let L̃(n) be a non-negative integer valued function of natural
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numbers. Define D(n) as the event that there are at least L̃(n) sample points
in the balls around x, for each design vector x,

D(n) =
\

x2S

n
Ln(x) � L̃(n)

o
.

Definition 1. A function h(n) is called O(na) where a 2 R if there is a
0 < r < 1 such that for all n 2 N, 0  h(n)  rn

a. A function h(n)
is called ⌦(na) where a 2 R if there is a 0 < L < 1 such that for all
n 2 N, h(n) � Ln

a.

In Theorem 2, we use ⌦(n��) to specify a sequence of decreasing radii
for the balls, and we use ⌦(n�) to bound below the number of points in each
ball, for some 0 < �, � < 1.

The parameter d
⇤ involved in the rate of decrease of radii is the max-

imum dimension of the convex sets comprising S, defined as follows. By
Assumption 1, we can write S as a finite union of convex compact sets,

S = [Ki=1Si

where Si is a convex compact set of dimension di for i = 1, . . . , K. Note that
di = 0 when Si is a singleton. Let

d
⇤ = max{1, d1, . . . , dK}.

For each iteration n, suppose that the sampling probability measure qn

for an implementation of SOSA can be written as a mixture of K probability
distributions, i.e.,

qn =
KX

i=1

pn,iqn,i (10)

where
PK

i=1 pn,i = 1, pn,i � 0, and qn,i is a probability measure with Si as
its support, for i = 1, . . . , K. We note that when Si is a singleton, i.e.,
di = 0, for any i = 1, . . . , K, the probability qn,i equals 1 on Si, since Si is
its support. Properties of qn are stated in the following assumption.

Assumption 4: For n = 1, 2, . . ., qn can be expressed as in (10), and for all
i = 1, . . . , K, pn,i > 0, with qn,i = 1 on Si for di = 0, and for di > 0, the sam-
pling probability qn,i is absolutely continuous with respect to di-dimensional
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Lebesgue measure with density uniformly bounded away from zero on S.

Assumption 4 ensures that it is possible for an implementation of SOSA
to accumulate enough sample points within the shrinking balls to satisfy the
conditions of Theorem 2, that is, the balls shrink slowly at a rate that is
dictated by d

⇤.

Theorem 2. If Assumptions 1, 2, 3 and 4 are satisfied, and rn is chosen to
be ⌦(n��), where � = (1� �)/d⇤, 1/2 < � < 1 and in " 1 such that in  n

s

where 0 < s < �, then a sequence of optimal value estimates f̂ ⇤
n converges to

the optimal value f
⇤ with probability one, i.e.,

f̂
⇤
n ! f

⇤ w.p.1.

Proof. According to Theorem 3 in [13], the theorem is proved if there exists
L̃(n) that is ⌦(n�) such that

1X

n=1

P (D(n)c) <1, (11)

where D(n)c is the complement of D(n). Note that Theorem 3 in [13] did
not require a convex feasible region. We next show that condition (11) is
satisfied given the stated assumptions.

Let, for i = 1, . . . , K,

Di(n) =
\

x2Si

n
Ln(x) � L̃(n)

o

where L̃(n) is of ⌦(n�) and S = [Ki=1Si from Assumption 1. Therefore,

D(n)c =
K[

i=1

Di(n)
c
,

and hence,
1X

n=1

P (D(n)c) 
KX

i=1

1X

n=1

P (Di(n)
c). (12)

Consider Si for a fixed i 2 {1, . . . , K}. First, consider the case that
di = 0, that is, Si contains only one isolated point, say x̄, and

P (Di(n)
c) = P

⇣
Ln(x̄) � L̃(n)

⌘
.

12



By the coupling argument in the proof of Theorem 4 in [13],

P (Di(n)
c) 

L̃(n)�1X

k=0

✓
n

k

◆
p̄
k(1� p̄)n�k

,

where p̄ > 0 is a lower bound of pn,i. Since L̃(n) is ⌦(n�) for �, 1/2 < � < 1,
applying the argument in the proof of Lemma 2 in [2], one can show that

1X

n=1

P (Di(n)
c) <1, (13)

when di = 0.
Now consider the case that di > 0. Note that a ball with radius r in Rd

when projected on Rdi is a ball with the same radius r. Since Si is a closed
and bounded convex set of di dimensions, Theorem 4 in [13], Assumption 4
and the condition on rn imply that there exists L̃(n) that is ⌦(n�) such that

1X

n=1

P (Di(n)
c) <1, where di > 0. (14)

By (12), (13) and (14), condition (11) holds, i.e.,

1X

n=1

P (D(n)c) <1,

for some L̃(n) that is ⌦(n�) and, hence, Assumptions 1, 2, 3, and Theorem 3
in [13] imply the theorem.

4. The Case of a Finite Feasible Set

We now consider the special case where S is a finite collection of isolated
points. For example, S could be a bounded subset of the integer lattice Zd.
While Theorem 2 holds for this special case, the finiteness of S allows us
to remove the requirement of Assumption 3 and achieve the same results.
Also in the finite case, SOSA does not require a slowing sequence in order to
converge to the global optimal value. This is made formal in Theorem 3 and
Corollary 1.
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In the finite case, when n is large, the ball radius rn becomes small enough
that eventually there is only one feasible point x in the ball B(x, rn) for each
x 2 S. Thus a feasible point x will be revisited several times, and the noisy
objective function values contributing to the objective function estimate at x,
for n large, are from the same point. Thus the bias in the objective function
estimate represented in the second term in (9) goes to zero as n increases.
Furthermore, as Theorem 3 states, the noisy function evaluations at x are iid,
which implies that the random error between the noisy function evaluations
and the true value are also iid.

For a fixed x, define N1, N2, . . . as the stopping times representing the
number of iterations until x is taken as a sample for the first time, the
second time, and so on.

Theorem 3. Consider any x 2 S and suppose that Xn = x for iter-
ations n = N1, N2, . . .. The corresponding objective function evaluations
YNk

= g(XNk
, ⇠Nk

) for k = 1, 2, . . . are independent and identically distributed
random variables.

Proof. Let x 2 S and suppose that Xn = x for n = N1, N2, . . .. We then
have

YNk
= g(XNk

, ⇠Nk
) = g(x, ⇠Nk

).

Hence, YNk
, k = 1, 2, . . . are iid if ⇠Nk

, k = 1, 2, . . . are iid.
Let us adopt the inductive hypothesis that

⇠N1 , . . . , ⇠Nk
are iid.

For A 2 A and k � 1,

P (⇠Nk+1
2 A | ⇠N1 = !1, . . . , ⇠Nk

= !k)

=
X

n1,...,nk+1

P (⇠Nk+1
2 A | ⇠N1 = !1, . . . , ⇠Nk

= !k, N1 = n1, . . . , Nk+1 = nk+1)

⇥P (N1 = n1, . . . , Nk+1 = nk+1 | ⇠N1 = !1, . . . , ⇠Nk
= !k)

=
X

n1,...,nk+1

P (⇠nk+1
2 A | ⇠N1 = !1, . . . , ⇠Nk

= !k, N1 = n1, . . . , Nk+1 = nk+1)

⇥P (N1 = n1, . . . , Nk+1 = nk+1 | ⇠N1 = !1, . . . , ⇠Nk
= !k) (15)

Since
{N1 = n1, . . . , Nk+1 = nk+1} 2 Fnk+1�1,
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and ⇠Nk+1 is independent of Fnk+1�1, we have

P (⇠nk+1
2 A | ⇠N1 = !1, . . . , ⇠Nk

= !k, N1 = n1, . . . , Nk+1 = nk+1)

= P (⇠nk+1
2 A) = P (⇠1 2 A). (16)

Substituting (16) into (15), we obtain

P (⇠Nk+1
2 A | ⇠N1 = !1, . . . , ⇠Nk

= !k) = P (⇠1 2 A), (17)

and hence

P (⇠Nk+1
2 A | ⇠N1 , . . . , ⇠Nk

) = P (⇠1 2 A) w.p.1. (18)

But then

P (⇠Nk+1
2 A) = E [P (⇠Nk+1

2 A | ⇠N1 , . . . , ⇠Nk
)]

= E [P (⇠1 2 A)]

= P (⇠1 2 A). (19)

By (18) and (19), we have

P (⇠Nk+1
2 A | ⇠N1 , . . . , ⇠Nk

) = P (⇠Nk+1
2 A) w.p.1. (20)

Now consider events Gi = {⇠Ni 2 Ai}, for Ai 2 A, i = 1, . . . , k, k+1. Let IGi

be the indicator function of Gi.

P (⇠Ni 2 Ai, i = 1, . . . , k, k + 1)

= E [⇧k+1
i=1 IGi ]

= E [IGk+1
⇧k

i=1IGi ]

= E [E [IGk+1
⇧k

i=1IGi | ⇠N1 , . . . , ⇠Nk
]]

= E [⇧k
i=1IGiE [IGk+1

| ⇠N1 , . . . , ⇠Nk
]]

because ⇧k
i=1IGi is ⇠N1 , . . . , ⇠Nk

measurable,

= E [⇧k
i=1IGiP (⇠Nk+1

2 Ak+1 | ⇠N1 , . . . , ⇠Nk
)]

= E [⇧k
i=1IGiP (⇠Nk+1

2 Ak+1)]

by Equation (20),
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= P (⇠Nk+1
2 Ak+1)E [⇧k

i=1IGi ]

= P (⇠Nk+1
2 Ak+1)⇧

k
i=1E [IGi ]

by the induction hypothesis that ⇠N1 , . . . , ⇠Nk
are iid,

= P (⇠Nk+1
2 Ak+1)⇧

k
i=1P (⇠Ni 2 Ai)

= ⇧k+1
i=1 P (⇠Ni 2 Ai) (21)

Since this is true for any arbitrary Ai 2 A, i = 1, . . . , k, k+1, by the definition
of independence, ⇠N1 , . . . , ⇠Nk

, ⇠Nk+1
are iid. This proves the theorem. .

In this finite case, SOSA does not require a slowing sequence in order
to converge to the global optimal value. In other words, we can set in = n

and still guarantee the convergence property. This is shown in the following
Corollary 1. Moreover, the strong law of large numbers of an iid sequence
and the finiteness of S remove the requirement on the bounded random error
in Assumption 3. The boundedness of the variance of the random error is
not even required. The following Corollary 1 relaxes the assumptions in
Theorem 2 for the finite case.

Corollary 1. In the finite case, if Assumption 4 holds and we set in = n,
then SOSA generates a sequence of optimal objective value estimates f̂ ⇤

n that
converges to the true optimal objective function f

⇤ with probability one, i.e.,

f̂
⇤
n ! f

⇤ w.p.1.

Proof. Since the sampling distribution qn is bounded away from zero on S

for each iteration n (by Assumption 4), and S is finite, each x in S will be
visited infinitely often by the search process as n!1. Consider any x 2 S

and iteration n, and suppose Xi = x for iterations i = N1, N2, . . . , Nk, where
Nk  n. By Theorem 3, YN1 , YN2 , . . . , YNk

are iid. Without loss of generality,
assume that rn < 1 for all n. From the algorithm,

f̂n(x) =

Pk
i=1 YNi

k
.

Since YNi ’s are iid and x is visited infinitely often, the strong law of large
numbers for an iid sequence implies

f̂n(x)! f(x) w.p.1.
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Since each x 2 S is visited infinitely often, for some large N , the set of
sample points visited on iteration n for n > N is the entire set, that is, we
have Xin = S. Since S is finite,

f̂
⇤
n = argminx2Xin

f̂n(x)! f
⇤ w.p.1.

Theorem 3 is valid not only for the pure discrete case, but also for the
mixed discrete-continuous case such as that in Figure 1(b) where the feasible
region is composed of zero-dimensional points together with other continuous
components. According to Theorem 3, the function evaluations correspond-
ing to multiple visits to the same point are iid. Therefore, the function
estimates of that point will converge to the true value. However, Corol-
lary 1 is not valid for the mixed discrete-continuous case. Whenever the
feasible region contains a continuous component, the slowing sequence and
the boundedness of the random errors are required to guarantee the conver-
gence of the optimal value estimates to the true optimal value as discussed
in Theorem 2.

5. Numerical Examples

We performed an experiment by applying SOSA to the following test
problem that has three continuous decision variables and four binary decision
variables [26]. The objective is to illustrate some key features of SOSA that
suggest its potential e↵ectiveness over a multiple replication approach.

Test Problem: Yuan et al.[26]

min E [f(x) + (1 + |f(x)|)U ]
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s.t.
6X

i=1

xi  5

3X

i=1

x
2
i + x

2
6  5.5

x1 + x4  1.2

x2 + x5  1.8

x3 + x6  2.5

x1 + x7  1.2

x
2
2 + x

2
5  1.64

x
2
3 + x

2
6  4.25

x
2
3 + x

3
5  4.64

xi � 0 for i = 1, 2, 3

xi 2 {0, 1} for i = 4, 5, 6, 7.

where

f(x) = 0.5⇥ [(x1 � 1)2 + (x2 � 2)2 + (x3 � 3)2+
(x4 � 1)2 + (x5 � 2)2 + (x6 � 1)2 � ln(x7 + 1)� 4.5796]

and x 2 <3 ⇥ {0, 1}4 and U ⇠ Uniform[�0.1, 0.1]. This problem contains a
single global optimum at x⇤ = (0.2, 0.8, 1.908, 1, 1, 0, 1) and f(x⇤) = 0.

We employ the mixed integer-continuous hit-and-run sampler [4, 25] as
the sample-point generator in the numerical experiment. The hit-and-run
sampler implicitly determines the sampling sequence qn.

The parameters to be determined for SOSA are s, the order of slowing
sequence, �, an upper bound on the slowing order, and �, the order of the
shrinking ball. The choice of one parameter will a↵ect the choice of the
others according to Theorem 2. From numerical experiences, a small value
of s will stall the algorithm. Therefore, in practice s should be set to a large
value close to but less than 1. This choice of s will force � to be a small
value close to but greater than zero. Here we set s = 0.9, � = 0.91 and
� = 0.09/d⇤ = 0.09/3 = 0.03.

We apply SOSA to solve the problem 100 times and take the averages of
the performance measures at each iteration.

With the same experimental setting, we compare the performance of
SOSA with that of a multiple replication approach formed by combining the
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same hit-and-run sampler with the adaptive search with resampling frame-
work (ASR), given in [2]. The di↵erence between SOSA and ASR is how
they perform replications and estimate the objective function.

In brief, ASR maintains a schedule of increasing replications of the func-
tion evaluation for all feasible points sampled so far. It then adds more
replications for promising points. ASR guarantees the same global conver-
gence as SOSA when Assumptions 1 to 4 are satisfied, since the number of
replications for ASR steadily increase. The main di↵erence is that SOSA
e�ciently performs its function evaluation only once at each of subsequent
sampled locations without reverting to perform multiple function evaluations
at every prior sampled locations as ASR does. Since the estimation di↵ers,
the sequence of points sampled will di↵er, even though the same hit-and-run
sample point generator is used. The numerical results are shown in Figure 2.

Figure 2 shows various performance metrics of the two algorithms at it-
eration n = 1, . . . , 12000. Panels (a) and (b) show, respectively, the averages
of the optimal value estimates f̂ ⇤(n) and the averages of the (true) objective
function of the optimal solution estimate f(x⇤

n). Panel (c) shows the aver-
ages of the number of samples whose function evaluations contribute to the
optimal value estimates, l⇤n, for SOSA and ASR. For SOSA,

l
⇤
n = |{k < n : xk 2 B(x⇤

n, rn)}|.

For ASR,
l
⇤
n = |{k < n : xk = x

⇤
n}|.

According to the theory, l⇤n of SOSA increases as the radius rn decreases. In
ASR, l⇤n also increases, but due to the scale in Figure 2, it is barely visible. It
is interesting to see that, l⇤n of SOSA can increase, in this case, much faster
than that of ASR.

Panel (d) shows the averages of the noises of the optimal solution esti-
mates, ê⇤n, corresponding to the two algorithms. The noises are computed as
the di↵erences between the optimal value estimates and the function values
of the optimal solution estimates. (They are the measurements in panel (a)
subtracted by those in panel (b).) Since SOSA accumulates more points that
contribute to the optimal value estimates than ASR does, as shown in panel
(c), the averages of the noises from SOSA are smaller than those from ASR.
Panel (d) implies that the optimal value estimate provided by SOSA is of
higher quality compared with that from ASR.
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In conclusion, with its adaptive sampling and averaging schemes, SOSA
can not only e�ciently produces the optimal solution estimates, but also,
through boot strapping, provide high-quality estimates of the optimal value.
A multiple replication approach such as ASR may assign many function
evaluations repeating the samples with poor objective functions, resulting in
unnecessarily slowing down the algorithm. The function evaluations gained
by SOSA at the optimal solution estimate also enhance the accuracy of the
optimal value estimate.

As demonstrated in the experiment, the strength of the proposed frame-
work is its ability to accommodate any stochastic search for global optimiza-
tion as long as it satisfies the assumptions as stated in Theorem 2. This
provides an algorithm designer with the liberty to focus solely on deriving
an e�cient search algorithm that might exploit the problem structure at
hand. For example, if one adopts the improving hit-and-run as the underly-
ing search algorithm (as the one used in the experiment), one may employ the
adaptive learning mechanism proposed by [12] to adapt the search direction
to the feasible region. Adding such an adaptive learning mechanism into the
search algorithm can improve the e�ciency of the search algorithm and still
preserves the asymptotic results guaranteed by the SOSA framework.
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Figure 2: Performance diagnostics for Algorithm 1 with respect to the test problem. The
mixed discrete-continuous hit-and-run is employed as the sample points generator. Panels
(a) and (b) exhibit the optimal value estimate and the true objective function value at
the optimal solution estimate (the best candidate), respectively. Panels (c) and (d) show
the contributions to the best candidates and the average noises of the optimal solution
estimate as functions of objective function evaluations, respectively. All the performance
measures are compared against the alternative algorithm.
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